Search results

1 – 2 of 2
Article
Publication date: 4 January 2021

Meiting Liu, Wenxin Yu, Junnian Wang, Yu Chen and Yuyan Bian

In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.

Abstract

Purpose

In this paper, a nine-dimensional chaotic system is designed and applied to secure communication.

Design/methodology/approach

Firstly, the equilibrium characteristics, dissipativity, bifurcation diagram and Lyapunov exponent spectrum are used to analyze the relevant characteristics of the proposed nine-dimensional chaotic system. In the analysis of Lyapunov exponential spectrum, when changing the linear parameters, the system shows two states, hyperchaos and chaos. For secure communication, there is a large secret key space. Secondly, C0 complexity and SEcomplexity of the system are analyzed, which shows that the system has sequences closer to random sequences.

Findings

The proposed nine-dimensional system has a large key space and more complex dynamic characteristics

Originality/value

The results show that the proposed nine-dimensional hyperchaotic system has excellent encryption capabilities and can play an important role in the field of secure communication.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 21 April 2022

Zuanbo Zhou, Wenxin Yu, Junnian Wang, Yanming Zhao and Meiting Liu

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional…

Abstract

Purpose

With the development of integrated circuit and communication technology, digital secure communication has become a research hotspot. This paper aims to design a five-dimensional fractional-order chaotic secure communication circuit with sliding mode synchronous based on microcontroller (MCU).

Design/methodology/approach

First, a five-dimensional fractional-order chaotic system for encryption is constructed. The approximate numerical solution of fractional-order chaotic system is calculated by Adomian decomposition method, and the phase diagram is obtained. Then, combined with the complexity and 0–1 test algorithm, the parameters of fractional-order chaotic system for encryption are selected. In addition, a sliding mode controller based on the new reaching law is constructed, and its stability is proved. The chaotic system can be synchronized in a short time by using sliding mode control synchronization.

Findings

The electronic circuit is implemented to verify the feasibility and effectiveness of the designed scheme.

Originality/value

It is feasible to realize fractional-order chaotic secure communication using MCU, and further reducing the synchronization error is the focus of future work.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 2 of 2